A Comparison of the Discrete Ordinates Method and Finite Volume Method for Radiative Heat Transfer Analysis
نویسندگان
چکیده
The time-dependent equation of radiative transfer is solved for a participating medium housed in an axisymmetric cylindrical enclosure by both the discrete-ordinates method and the finite volume method. Many heat transfer processes, including absorption of renewable and sustainable solar energy in a solar receiving tube for use in power plants, can be modeled in a cylindrical enclosure. Steady-state and transient heat flux profiles are generated for both purely absorbing and absorbing-scattering media using both solution methods. The effect of changes in scattering albedo and optical thickness is investigated. A basic modeling of a solar energy receiving tube is presented, and the volumetric radiative absorbed energy rate at the radial centerline is calculated to determine the amount of absorbed energy that can be transferred to a working fluid in a solar reactor. Comparisons of both computational time and committed memory usage for each method are presented. In general, heat fluxes predicted by the FVM with 288 directions tend to slightly underpredict those determined using the DOM quadrature. The FVM requires more committed memory and has longer convergence times than the DOM due to the inherent differences in angular quadrature.
منابع مشابه
Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow
This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...
متن کاملA hybrid scheme of single relaxation time lattice Boltzmann and finite volume methods coupled with discrete ordinates method for combined natural convection and volumetric radiation in an enclosure
This paper is focused on the application of hybrid Single relaxation time lattice Boltzmann and finite volume methods in conjunction with discrete ordinates method to simulate coupled natural convection and volumetric radiation in differentially heated enclosure, filled with an absorbing, emitting and non-scattering gray medium. In this work, the velocity and temperature fields are calculated u...
متن کاملThree Dimensional Laminar Convection Flow of Radiating Gas over a Backward Facing Step in a Duct
In this study, three-dimensional simulations are presented for laminar forced convection flow of a radiating gas over a backward-facing step in rectangular duct. The fluid is treated as a gray, absorbing, emitting and scattering medium. The three-dimensional Cartesian coordinate system is used to solve the governing equations which are conservations of mass, momentum and energy. These equations...
متن کاملInteraction of laminar natural convection and radiation in an inclined square cavity containing participating gases
Two-dimensional numerical study of flow and temperature fields for laminar natural convection and radiation in the inclined cavity is performed in the present work. The walls of the square cavity are assumed kept at constant temperatures. An absorbing, emitting, and scattering gray medium is enclosed by the opaque and diffusely emitting walls. The set of governing equations, including conservat...
متن کاملANALYSIS OF COMBINED CONDUCTION AND RADIATION HEAT TRANSFER IN A RECTANGULAR FURNACE INCLUDING TWO FLAMES
Abstract: The present study deals the theoretical modeling aspects of coupled conductive and radiative heat transfer in the presence of absorbing, emitting and scattering gray medium within two-dimensional square furnace including two flames. The gray radiative medium is bounded by isothermal walls which are considered to be opaque, diffuse and gray. The well known discrete ordinate method (DOM...
متن کامل